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Introduction 
 
THERMAL is designed to calculate neutron thermal scattering that is elastic and isotropic 
in the center of mass system. At low energy thermal motion will be included. At high 
energies the target nuclei are assumed to be stationary. The point of transition between 
low and high energies has been defined to insure a smooth transition. 
  
It is assumed that at low energy the elastic cross section is constant in the relative system. 
At high energy the cross section can be of any form. 
  
You can use this routine for all energies where the elastic scattering is isotropic in the 
center of mass system. In most materials this will be a fairly high energy, e.g., the keV 
energy range. 
 
The THERMAL method is simple, clean, easy to understand, and most important very 
efficient; on a IBM-PC Pentium Pro 200, at low energies with thermal scattering it can do 
about 9 million scatters a minute and at high energy about 31 million.  
 
Warning: This version of THERMAL completely supersedes the original version 
described in the same report number, dated February 24, 1995. The method used in the 
original code is incorrect, as explained in this report. 
  

Documentation 
 
This routine is designed to be self-documenting, in the sense that the latest documentation 
for the routine is included as comment lines at the beginning of the routine. Reports, such 
as this one, are periodically published. However, the user should be aware that the 
comment lines within the routine are continuously updated to reflect the most recent 
status of the routine and these comment lines must always be considered the most recent 



documentation. Therefore the user is advised to always read the comment lines within the 
routine. 
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Background 

 
THERMAL is designed to calculate neutron thermal scattering that is elastic and isotropic 
in the center of mass system. At low energy thermal motion will be included. At high 
energies the target nuclei are assumed to be stationary. The point of transition between 
low and high energies has been defined to insure a smooth transition. 
  
It is assumed that at low energy the elastic cross section is constant in the relative system. 
At high energy the cross section can be of any form. 
  
You can use this routine for all energies where the elastic scattering is isotropic in the 
center of mass system. In most materials this will be a fairly high energy, e.g., the keV 
energy range. 
 
The THERMAL method is simple, clean, easy to understand, and most important very 
efficient; on an IBM-PC Pentium Pro 200, at low energies with thermal scattering it can 
do about 9 million scatters a minute and at high energy about 31 million.   
 
Warning: This version of THERMAL completely supersedes the original version 
described in the same report number, dated February 24, 1995. The method used in the 
original code is incorrect, as explained in this report. 
 
Before introducing the THERMAL model I will first cover the background information 
needed to understand thermal scattering. In particular I will try to describe all 
assumptions and approximations used, so that the reader can clearly understand the range 
of validity of the method. 
 
How to do Thermal Scattering 
 
It is recommended that for those materials that thermal scattering law data is available 
you use it; this will give you the best representation of thermal scattering. However, 
thermal scattering law data is only available for a few materials, whereas typical nuclear 
data files contain data for a hundred or more materials. THERMAL is designed to be used 
for those materials that thermal scattering law data is not available, i.e., most of the 
materials in nuclear data files. It is recommended that the "high" energy THERMAL 
treatment be used for all materials for all energies above thermal up to the highest energy 
where the elastic scattering is still isotropic in the center of mass system. Do not fail to 
appreciate the advantage of using this higher energy treatment; it is very efficient and fast, 



on an IBM PC Pentium Pro 200 being able to process about 31million scatters per 
minute.  
 
Frame of Reference 
 
In this report I will use three frames of reference, 
 
The Lab frame of reference is a stationary frame of reference with regard to the bulk of 
the media through which the neutrons are transporting = my Lab. It is the system that we 
use to transport neutrons between spatial points during a transport calculation, i.e., we 
transport neutrons a given distance with reference to the media that it is passing through. 
Later when we discuss the distribution of target nuclei we will see that it is also the only 
system in which it makes sense to assume the targets are moving isotropically.  
 
The Relative frame of reference is centered on and moving with the neutron. It is the 
system in which we can observe and define the actual neutron reaction rate, i.e., it is 
relative motion between neutron and target that leads to and defines the reaction rate. For 
each interaction there are two "particles", a neutron and a target , and in principle we 
could define the relative frame as centered on and moving with either. However, in 
selecting which interaction occurs we will consider one neutron and a known ensemble of 
target nuclei that the neutron could possibly interact with. Therefore it makes more sense 
to define the relative frame as centered on and moving with the one neutron. 
 
The Center of Mass frame of reference is centered on and moving with the 
neutron+target mass. It is the system in which we will define the angular distribution of 
scattered neutrons and in which we will describe the actual kinematics of neutron scatter. 
 
In the following discussion I will attempt to always clearly identify the frame or frames of 
reference. However, I will admit that the terminology sometimes becomes confusing, 
particularly with regard to Relative vs. Center of Mass frames. For example, it is fairly 
common practice when discussing the Doppler broadening equation to say that this 
equation conserves reactions in the Lab and Center of Mass system, whereas the only two 
systems explicitly involved are the Lab and Relative frames. I will try to make clear what 
systems I am using; my apologies in advance if I do not always succeed in making this 
clear.    
 
Calculation of Reaction Rate 
 
In normal temperature ranges the actual relative frame nuclear cross sections are not 
temperature dependent. The Doppler broadened cross section is temperature dependent 
because we need to perform calculations in the Lab frame of reference. The "apparent" 
temperature dependence is only due to the transformation between relative and Lab 
frames of reference. In this transformation we wish to conserve a physical observable: 
namely, the reaction rate in both systems. 
 



The reaction rate is defined by the Doppler broadening equation, which conserves 
reaction rate in the relative and laboratory systems by defining the Doppler broadened 
(laboratory) cross section, sig(v), 
 
v sig(v) =  <vr sig(vr) P(vt)> 
 
Lab reactions =  Relative reactions 
 
v = laboratory speed 
sig(v) = Doppler broadened (laboratory) cross section 
vr = relative speed (relative between target nucleus and neutron) 
sig(vr) = cross section at relative speed 
P(vt) = distribution of target nuclei 
 
One important point to understand: the cross sections in the relative frame of reference, 
sig(vr), are the so called "cold" cross sections that have not been Doppler broadened, and 
the speed, vr, or equivalently the energy, Er, are defined at relative speed and energy, not 
center of mass speed and energy, or in any other frame of reference. Starting from 
evaluated neutron data as it appears in most evaluated data files, such as ENDF/B, the 
data is "cold", where cross sections and resonances parameters are given at Lab neutron 
energies. "Cold" means that the medium is at zero Kelvin temperature, so that neutron 
Lab and relative speed and energy are equal. Therefore the "cold" data to use in the 
Doppler broadening equation is exactly the data as it appears in most evaluated data files, 
and to define the cross section in the Doppler broadening equation the relative speed or 
energy is the Lab speed or energy at which the "cold" data is tabulated. In particular, do 
not make the mistake of trying to use center of mass energies, or energy is any other 
frame of reference: just use the cross sections at exactly the energies at which they are 
tabulated. 
 
From the units of vr (cm/second), sig(vr) (1/cm), and P(vt) d(vt) (dimensionless), the 
units of reactions v sig(v) or <vr sig(vr) P(vt)> is 1/seconds = reactions per second. 
 
Note, based on the units of the results, 1/seconds, this equation MUST NOT be 
interpreted to define the average relative speed, which has units of cm/second; this point 
will be discussed in detail below. 
 
Calculation of Average Relative Speed 
 
The normalized distribution of relative speeds for targets that actually collide is defined 
by, 
 
P = vr sig(vr) P(vt)/<vr sig(vr) P(vt)> 
 
and the average relative speed is defined by, 
 



<vr> = <vr P>/<P> = <vr P> 
 = <vr 2sig(vr) P(vt)>/<vr sig(vr) P(vt)> 
 
The units of <vr> are cm/second. 
 
Note, based on the units of the results, cm/second, this equation MUST NOT be 
interpreted to define the reaction rate, which has units of 1/second; this point will be 
discussed in detail below. 
 
Consistent Reaction Rates: Part 1 
 
In defining reaction rates we will consider the average time between collisions. The time 
between collisions is, 
 
t   = x/[v sig(v)] 
 
where x is the distance to collision and is exponentially distributed and has an average 
expectation value of 1. In the following I will indicate this as <1>. 
 
From the Doppler broadening equation we have, 
 
v sig(v) = <vr sig(vr) P(vt)> 
 
so that the time between collisions is, 
 
t = <1>/[v sig(v)] = <1>/<vr sig(vr) P(vt)> 
 
The distribution of relative speeds is, 
 
P = vr sig(vr) P(vt)/<vr sig(vr) P(vt)> 
 
In the LAB frame of reference, 
 
<t> = <t P> = <1> [<vr sig(vr) P(vt)>/<vr sig(vr) P(vt)>]/<vr sig(vr) P(vt)> 
 
       = <1>/<vr sig(vr) P(vt)> 
 
In the Relative system we have, 
 
t = <1>/[vr sig(vr)] 
 
<t> = <t P> = <1> <[vr sig(vr) P(vt)/[vr sig(vr)]>/<vr sig(vr) P(vt)> 
                    = <1> <P(vt)>/<vr sig(vr) P(vt)> 
                    = <1>/<vr sig(vr) P(vt)> 
 



Therefore we have a consistent average time between events, and therefore a consistent 
reaction rate in the LAB and Relative systems. 
 
This is an important result, since it means that in principle we can perform calculations in 
either the LAB or Relative system, and expect to obtain the same answer, at least as far as 
reaction rate. For example, in the Relative frame we can sample a relative speed, vr, and 
cross section, sig(vr). These in turn can be used to define the distance and time to the next 
collision, 
 
x  = -Log(random)/sig(vr) 
 
t  = x/vr = -Log(random)/[vr sig(vr)] 
 
and at the collision site the relative speed, vr, can be used to solve the kinematics 
equations to define the new neutron speed after the collision. 
 
Alternatively, in the Lab system, we can define the distance and time to the next collision, 
 
x  = -Log(random)/sig(v) 
 
t  = x/v = -Log(random)/[v sig(v)] 
 
and at the collision site we can sample the relative speed, vr, and use it to solve the 
kinematics equations to define the new neutron speed after the collision. 
 
Whichever approach we use we expect the same reaction rate, since above we have seen 
that the expected average time between collision, <t>, is the same in both systems, 
 
<t>  = <1>/<vr sig(vr) P(vt)> = <1>/[v sig(v)] 
 
Which Frame of Reference Should We Use? 
 
As I said above, "in principle" we can use either frame of reference. In fact it is only 
practical to use the Lab frame of reference. From the above where we only considered 
average time between collisions, and therefore average reaction rate, we can use either 
system. However, there are some definite and practical reasons for only using the Lab 
frame, 
 
1) In order to use the Relative frame we have to know the cross sections in the relative 
frame. This means we have to know the so called "cold" cross sections, that have not 
been Doppler broadened. In this report I will only be discussing the elastic cross section. 
But to actually perform transport calculations we need all of the cross sections. Trying to 
sample all cross sections to define the total in the relative frame is generally very difficult. 
But the real bottom line is that since the data in our application oriented nuclear data files 
have generally already been Doppler broadened to one or more temperatures, using the 
Relative frame is impractical. 



 
2) If we consider the speed of convergence of average reaction rates the Lab frame has a 
definite advantage over the Relative frame. The reaction rate is, 
 
Lab, 
 
x  = -Log(random)/sig(v) 
t   = x/v = -Log(random)/[v sig(v)] 
 
where v sig(v) has been pre-calculated from the Doppler broadening equation. Therefore 
the speed of convergence is based on the speed of convergence in sampling the 
exponentially distributed distance to collision. 
 
Relative, 
 
x  = -Log(random)/sig(vr) 
t   = x/vr = -Log(random)/[vr sig(vr)] 
 
In this case we do not use the pre-calculated Doppler broadened results. Therefore the 
speed of convergence is based on the speed of convergence of not only the exponential 
distance to collision, but also on the speed of convergence of the distribution of vr sig(vr) 
to the Doppler broadened result v sig(v). 
 
Therefore, in the Relative frame the speed of convergence of the reaction rate should be 
slower than in the Lab system.  
 
3) Above we saw that the average time between collisions is the same in both systems. 
What about the average distance to collision? 
 
In the Lab frame, 
 
x = -Log(random)/sig(v) 
 
<x> = <x P> = <1><P/sig(v)> 
 
P = vr sig(vr) P(vt)/<vr sig(vr) P(vt)> 
 
<x> =<1><[vr sig(vr) P(vt)/sig(v)]>/<vr sig(vr) P(vt)> 
        =<1><[vr sig(vr) P(vt)]>/<vr sig(vr) P(vt)>/sig(v) 
        = <1>/sig(v) 
 
In the Lab frame the Doppler broadened cross section is used to define the distance to 
collision. 
  
In the Relative frame, 
 



x  = -Log(random)/sig(vr) 
 
<x> = <x P> = <1><P/sig(vr)> 
 
P = vr sig(vr) P(vt)/<vr sig(vr) P(vt)> 
 
<x> =<1`><[vr sig(vr) P(vt)/sig(vr)]>/<vr sig(vr) P(vt)> 
        =<1`><vr P(vt)>/<vr sig(vr) P(vt)> 
        =<1><vr P(vt)>/[v sig(v)] 
 
In general <vr P(vt)> is not a quantity that we explicitly conserve. Therefore the average 
distance to collision using Lab or Relative frame is not the same. If we consider the case 
of a constant relative cross section, sig(vr) = 1, then, 
 
<vr sig(vr) P(vt)> = <vr P(vt)> = v sig(v) 
 
and in the relative frame, 
 
<x> = <1> 
 
compared to the Lab frame solution, 
 
<x> = <1>/sig(v) 
 
In other words, if the relative frame is used the effect of the Doppler broadened cross 
section is ignored. Since at lower energies the Doppler broadened cross section will be 
larger than the constant "cold" cross section, ignoring the effect of Doppler broadening on 
the cross section will overestimate the distance to collision. 
 
Bottom line: Only the Lab frame of reference is practical to use in applications.  
 
Warning - there are a number of codes that actually use the relative frame: if they are 
using the relative frame speed and cross section to define the distance to collision as 
described above what is being done is incorrect. Consider the simplest case of a 
constant relative cross section where the macroscopic total cross section is 1 per cm, so 
that the mean free path is 1 cm. Since the cross section in the relative is constant, 
regardless of the relative speed selected the relative cross section will always be 1 per cm, 
and the mean free path 1 cm. 
 
The relative frame cross section and mean free path cannot be used to transport neutrons 
in the Lab frame, because this would ignore the fact that a portion of the relative speed is 
not due to neutron motion in the Lab, but is rather due to target motion; note, there is a 
good reason that it is called the relative speed, and not the Lab speed. For example, in 
hydrogen at thermal energy the Lab (Doppler broadened) cross section is about 50 % 
higher than the "cold" relative cross section. This means that at this energy the motion of 



the neutron contributes 2/3 and the motion of the target 1/3 to the relative speed. 
Therefore on average rather than the neutron moving 1 cm per collision in the Lab, the 
neutron is only moving 2/3 cm per collision and the target moves 1/3 cm per collision 
relative to the neutron, and the two speeds combine to yield a total relative distance of 1 
cm per collision 
 
If you want to consider the most extreme case, consider a stationary neutron. Due to 
thermal motion of the target nuclei the neutron will still interact and the sampled relative 
speed can be used to define the time between collisions. In this case how far did the 
neutron move between collision? Move? I said the neutron is stationary; it didn't move at 
all; all of the motion is due to target motion. 
 
Per collision using the relative frame speed and cross section will conserve reaction rate, 
by conserving time between collisions, but this doesn't necessarily mean that it will 
conserve the overall time scale of a system. The reason is that by moving neutrons too far 
between collisions (based on the relative frame cross section), we are moving them 
further than they could have possibly moved, based on the average time between 
collisions, and over a number of collisions this can completely change the time scale of a 
system. Consider the case where we have neutrons at point A and we want to transport 
them to point B that is many, or at least a number of, mean free paths away from point A. 
If we use the relative frame cross section to predict the distance between collisions we 
will over predict the distance between collisions. The result will be that in transporting 
between point A and point B we will underestimate the number of collisions, and thereby 
overestimate the number of neutrons arriving at point B, and we will also cause the 
neutrons to arrive too early in time at point B.  
 
Failure to consider this point ignores the effects of Doppler broadening and can lead to 
completely erroneous results. If you are using this approach and want to do it correctly, 
contact me. 
  
Consistent Reaction Rates: Part 2 
  
Now that we have decided to only use the Lab system, there are additional points to 
consider. In order to consistently use the Lab system we need Doppler broadened cross 
sections which: 1) have been Doppler broadened using a method that is consistent with 
the THERMAL method, 2) have been Doppler broadened to the temperature of the 
medium through which the neutrons are transporting. 
 
The SIGMA1 method of Doppler broadening (see, ref. 1) is completely consistent with 
the THERMAL method and it is highly recommended that you use the SIGMA1 program 
(see ref. 2) to Doppler broaden your cross sections to any temperature, or temperatures, 
that you require for use in your applications; this handles point 1), discussed above. 
 
The second point of insuring that the Doppler broadened cross sections that you use have 
been broaden to exactly the temperature of the medium, can present a problem to real 
applications involving different temperatures in different spatial zones, or even 
temperature gradients. There are a number of ways to solve this problem; the "best" 



method to use is highly problem dependent. I'll not go into detail here, but if you have this 
problem contact me so that we can discuss your specific problem. 
 
Constant Elastic Cross Section 
 
Above I have considered the case of a general cross section. From this point on I will 
consider the specific case of the elastic cross section at low energy. In this case I will 
assume that the cross section in the relative frame, the so called "cold" cross section, that 
has not been Doppler broadened, is constant. For the case where sig(vr) is independent of 
vr (or energy) the equations reduce to the simpler form,   
 
Doppler Broadening Equation, 
 
v sig(v) =  sig <vr P(vt)> 
 
Average Relative Speed 
 
<vr> = <vr 2 P(vt)>/<vr P(vt)> 
 
The following will assume that sig = 1, so that all results for the Doppler broadening 
equation will be per barn of constant cross section. Since sig appears in both numerator 
and denominator of the definition of average relative speed, it cancels out and these 
results will be absolute. 
 
Isotropic Target Distribution 
 
We will assume that the distribution of target nuclei velocities is isotropic, 
 
P(vt) d(vt) d(mu) d(phi) = P*(vt) d(vt) d(mu) d(phi)/(4  pi) 
 
mu  = Cos(theta) = angle relative to neutron's direction of motion 
phi  = azimuthal angle 
 
Integrating over the azimuthal angle, 
 
v sig(v) = <vr P(vt)> = <d(mu)<vr P*(vt) d(vt)>>/2 
 
Using, 
 
vr2  = [v2 - 2 mu v vt + vt2] 
 
d(mu)  = vr d(vr)/[v vt] 
 
v sig(v) = <vr P(vt)> = <vr2 d(vr)<P*(vt) d(vt)/vt>>/[2 v] 



 
where the integral over vr is from zero to infinity, and the integral over vt is from |v - vr| 
to |v + vr|. 
 
This is a general result for any isotropic distribution of target nuclei velocities. 
  
Maxwellian Free Atom Model 
 
We will assume that the distribution of target nuclei is isotropically distributed in a 
Maxwellian; the so called free atom model, 
 
P*(vt) d(vt)               = (4/(pi)1/2) b3/2 vt2 Exp(-b vt2) d(vt) 
 
b  = A/(2 k T) 
A  = Ratio of atomic weight of target to atomic weight of neutron 
k  = Boltzmann's constant 
T  = Absolute temperature (Kelvin) 
 
v sig(v) = <vr P(vt)>   = (2/(pi)1/2) <vr2 d(vr)<b3/2 vt Exp(-b vt2) d(vt)/v>> 
 
2<b1/2 vt Exp(-b vt2) d(b1/2 vt)> = <Exp(-b vt2) d(b vt2)>  
 
v sig(v) = <vr P(vt)> = [(b/pi)1/2/v] <vr2 K(v, vr) d(vr)> 
 
K(v, vr) = Exp[-b (v - vr)2] - Exp[-b (v + vr)2] 
 
which is the normal form of the Doppler broadening equation that we are used to using. 
 
v sig(v) = <vr P(vt)> = <K*(v, vr) d(vr)> 
K*(v, vr) = (b/pi)1/2 (vr2/v) {Exp[-b (v - vr)2] - Exp[-b (v + vr)2]} 
 
Note, in this equation vr2 comes from the change of integration variables from mu to vr; 
vr, not vr2, appears in the original equation.  
 
Similarly the distribution of relative speeds can be written as, 
 
P = vr P(vt)/<vr P(vt)> 
 = K*(v, vr) d(vr)/<K*(v, vr)> 
 
and the average relative speed is, 
 
<vr> = <vr K*(v, vr)>/<K*(v, vr)> 



 
Doppler Broadened Cross Section 
 
For normalization we need the Doppler broadened cross section, or rather reaction rate, 
 
v sig(v) = <vr P(vt)> = <K*(v, vr) d(vr)> 
 
K*(v, vr) = (b/pi)1/2 (vr2/v) {Exp[-b (v - vr)2] - Exp[-b (v + vr)2]} 
 
Changing variables, 
 
y2 = b v2 
x2 = b vr2 
 
sig(y) = (1/pi)1/2/y2 <x2{Exp[-(x - y)2] - Exp[-(x + y)2]}d(x)> 
 
sig(y) = sig*(y) - sig*(-y) 
 
sig*(y) = (1/pi)1/2/y2 <x2 Exp[-(x - y)2] d(x)> 
 
Changing variables, 
 
Z = x - y 
x = Z + y 
d(x) = d(Z) 
 
sig*(y)   = (1/pi)1/2/y2 <(Z + y)2 Exp[-Z2] d(Z)> 
 
sig*(y)   = (1/pi)1/2/y2 Int[-y to infinity] (Z2 + 2 y Z + y2) Exp[-Z2] d(Z) 
   
sig*(-y)  = (1/pi)1/2/y2 Int[+y to infinity] (Z2 - 2 y Z + y2) Exp[-Z2] d(Z) 
 
Integrating and adding sig*(y ) and sig*(-y), 
 
y sig(y) =[y + 1/(2 y)] ERF(y) + 1/(pi)1/2 Exp(-y2) 
 
b1/2v sig(v)     =[b1/2v + 1/(2 b1/2 v)] ERF(b1/2 v) + 1/(pi)1/2 Exp(-b v2) 
 
v sig(v) =[v + 1/(2 b v)] ERF(b1/2 v) + 1/(b pi)1/2 Exp(-b v2) 
 
Average Relative Speed  
 
For verification we also need the average relative speed, 
 



<vr> = <vr K*(v, vr)>/<K*(v, vr)> 
 
K*(v, vr) = (b/pi)1/2 (vr2/v) {Exp[-b (v - vr)2] - Exp[-b (v + vr)2]} 
 
<vr>  = <(b/pi)1/2 (vr3/v) {Exp[-b (v - vr)2] - Exp[-b (v + vr)2]}>/<K*(v, vr)> 
 
Changing variables, 
 
y2 = b v2 
x2 = b vr2 
 
<vr> = (1/b pi)1/2/y <x3{Exp[-(x - y)2] - Exp[-(x + y)2]}d(x)>/<K*(v, vr)> 
 
<b1/2 vr> = <x> = (1/pi)1/2/y{Exp[-(x - y)2] - Exp[-(x + y)2]}d(x)>/<K*(v, vr)> 
 
<x> = <x*(y)> - <x*(-y)> 
 
<x*(y)> = (1/pi)1/2/y <x3 Exp[-(x - y)2] d(x)>/<K*(v, vr)> 
 
Changing variables, 
 
Z = x - y 
x = Z + y 
d(x) = d(Z) 
 
<x*(y)> = (1/pi)1/2/y <(Z + y)3 Exp[-Z2] d(Z)>/<K*(v, vr)> 
 
From the above solution of the Doppler broadening equation, 
 
y sig(y)    = <K*(v, vr)> = [y + 1/(2 y)] ERF(y) + 1/(pi)1/2 Exp(-y2) 
 
<x*(y)> = (1/pi)1/2/y Int[-y to infinity] (Z3 + 3 y Z2 + 3 y 2Z + y3) Exp[-Z2] d(Z) 
 
<x*(-y)>= (1/pi)1/2/y Int[+y to infinity] (Z3 - 3 y Z2 + 3 y 2Z - y3) Exp[-Z2] d(Z) 
 
Integrating and adding <x*(y)> and <x*(-y)>, 
 
<x>     = [3/2 + y2]/[(y + 1/(2y)) ERF(y) + 1/(pi)1/2 EXP(-y2)] 
 
<b1/2vr>   = [3/2 + b v2]/[(b1/2 v+ 1/(2b1/2v)) ERF(b1/2v)+1/(pi)1/2 EXP(-b v2)]  
 
<vr>   = [3/2/b + v2]/[(v+ 1/(2b v)) ERF(b1/2v)+1/(b pi)1/2 EXP(-b v2)]  



  
Low and High v Limits 
 
y sig(y) =[y + 1/(2 y)] ERF(y) + 1/(pi)1/2 Exp(-y2) 
<x>             = [3/2 + y2]/[(y + 1/(2y)) ERF(y) + 1/(pi)1/2 EXP(-y2)] 
b  = A/(2 k T) 
 
Low 
 
ERF(y) = 2/(pi)1/2 Exp(-y2)[y + (2/3)y3 +......... 
 
Lim y---> 0     [y + 1/(2y)] ERF(y) ---> 2/(pi)1/2Exp(-y2)[1/2 + (1/3)y2 + y2  +..... 
                   ---> 1/(pi)1/2 Exp(-y2) 
 
y sig(y) ----> 2/(pi)1/2 Exp(-y2) -----------------> 2/(pi)1/2 
 
v sig(v) -----> 2/(b pi)1/2 
    ------> [2/pi1/2] [2 k T/A]1/2 
 
<x> ---------> [3/2 + y2]/[2/(pi)1/2Exp(-y2) ---> (3/2)[pi1/2/2] 
 
<vr> --------> (3/2)/[(pi/b)1/2/2] 
 --------> (3/2)/[pi1/2/2][2 k T/A]1/2  
 
In the low energy limit as the neutron Lab speed, v, approaches zero both the reaction 
rate, v sig(v), and the average relative speed, <vr>, approach constants. This is what we 
expect, since in this limit both are defined only by the thermal motion of the target. Note, 
that both have exactly the same [T/A]1/2 dependence on temperature and target mass, i.e., 
they increase as temperature increases and decrease as target mass increases. 
 
Note, since the low energy reaction, v sig(v), approaches a constant, the Doppler 
broadened cross section, sig(v), is varying as 1/v. 
  
High 
 
Lim y----> infinity ERF(y) -----> 1, Exp(-y2) ----> 0 
 
y sig(y) ------> [y + 1/(2y)] --------> y 
 
v sig(v) -------> v 
 
<x> -----------> [3/2 + y2]/y --------> y 
 



<vr> ----------> v             
 
In the high energy limit as the neutron speed, v, becomes much larger than the target 
speed there is no longer a significant spread in the distribution of relative speeds, and the 
relative speed, vr,  approaches the neutron Lab speed, v. This is what we expect, since in 
this limit both are defined only by the neutron motion.  
 
Note, since the high energy reaction, v sig(v), approaches v, the Doppler broadened cross 
section, sig(v), is varying as 1, i.e., it approaches the constant Relative frame cross 
section. 
    

Sampling  
 
With all of the above as background, we now come to the point of this paper: how do we 
sample the distribution to define the speed and direction of neutrons after an elastic 
collision. The distribution of relative speeds is, 
  
P  = vr P(vt)/<vr P(vt)> 
 
Here we assume a constant relative cross section, sig(vr), and that P(vt) is an isotropic 
Maxwellian, 
 
P(vt) d(vt) = P*(vt) d(vt) d(mu) d(phi)/(4 pi) 
  
P*(vt) d(vt) = (4/(pi)1/2) b3/2 vt2 Exp(-b vt2) d(vt) 
 
which leads to the reaction rate and average relative speed, 
  
<vr P(vt)> =[v + 1/(2 b v)] ERF(b1/2 v) + 1/(b pi)1/2 Exp(-b v2) 
 
<vr>          = [3/2/b + v2]/[(v+ 1/(2b v)) ERF(b1/2v)+1/(b pi)1/2 EXP(-b v2)]  
 
where the relative speed, vr, can be defined in terms of neutron, v, and target , vt, speeds 
and the cosine, mu, between the directions of the neutron and target, 
  
vr2  = [v2 - 2 mu v vt + vt2] 
 
In dimensionless form, 
 
y2 = b v2 
x2 = b vr2 

z2 = b vt2 
 
P = x P*(z)/<x P*(z)> 



 
P*(z) d(z) = 4/pi1/2 z2 Exp(-z2) d(z) 
<x P(z)> = [y + 1/(2y)] ERF(y) + 1/pi1/2 Exp(-y2)  
 
x2  = [y2 - 2 mu y z + z2] 
 
The Most Widely Used Method 
 
In the general case with an energy dependent cross section there is an advantage to 
changing variables from mu to x, so that we can express the Doppler broadening equation 
in terms of x, relative speed, and therefore the energy dependent cross section Sig(x), or 
Sig(vr), directly in terms of the variable x in the equation. Therefore we next change 
variables from mu to x, using, 
 
2 x d(x) = -2 y z d(mu) 
 
x P(x)  = x2 4/pi1/2 z2 Exp(-z2) d(x) d(z)/(2 y z) 
  = x2 2/pi1/2 z Exp(-z2) d(x) d(z)/y 
  = 1/(pi1/2 y) x2 d(x) Exp(-z2) d(z2)  
 
By integrating over z we obtain a singly dimensioned integral in x, the relative speed, so 
that we can define the cross section only in terms of the relative speed. 
 
  = 1/(pi1/2y) x2 d(x){Exp[-(x-y)2] - Exp[-(x+y)2} 
 
This is the form that most approaches to thermal scattering use: sample the above 
distribution in x and y, and use,  
 
x2  = [y2 - 2 mu y z + z2] 
 
to define mu, 
 
mu   = [y2 + z2 - x2]/[2 y z] 
 
The THERMAL Method 
 
Here I will use a much simpler approach. Since in this case the cross section is constant 
there really isn't any advantage to changing variables from mu to x. Therefore I will 
sample the distribution directly,  
 
P = x P*(z)/<x P*(z)> 
 
P*(z) d(z) = 4/pi1/2 z2 Exp(-z2) d(z) 
<x P(z)> = [y + 1/(2y)] ERF(y) + 1/pi1/2 Exp(-y2)  



 
x2  = [y2 - 2 mu y z + z2] 
 
With this approach P*(z) is simply an isotropic Maxwellian. The most straightforward 
approach is to sample the isotropic Maxwellian, P*(z), and then accept or reject on the 
relative speed, x. However, this approach is very inefficient, particularly for low neutrons 
speeds; in the low neutron speed limit the efficiency is only 28 %. 
 
A better approach suggested by Gene Canfield (again, thank you Gene) is to multiply and 
divide by [y + z], neutron plus target speed,  
 
P = [x/(y + z)] [(y + z) P*(z)]/<x P*(z)> 
 
and to sample (y + z) P*(z), and accept or reject on x/(y + z). The advantage of this 
approach is an increase in efficiency. For low neutron speeds, x, the relative speed, y, 
approaches the target speed, z, and in the low neutron speed limit efficiency approaches 
100 %. Similarly for high neutron speeds, x, the relative speed, y, approaches the neutron 
speed and efficiency approaches 100 %. As we will see later, the minimum efficiency is 
at x slightly larger than 1, where the efficiency is roughly 69 %. Overall compared to 
sampling P*(z) directly this approach almost doubles the sampling speed. 
 
We must sample, 
 
P+(z) d(z) = (y + z) P*(z) d(z) = (y + z)4/pi1/2 z2 Exp(-z2) d(z) 
              
                 = y P1(z) d(z) + P2(z) d(z) 
 
where, 
 
P1(z) d(z) = 4/pi1/2 z2 Exp(-z2) d(z) = Maxwellian  
 
P2(z) d(z) = 4/pi1/2 z3 Exp(-z2) d(z) = 2/pi1/2 (z2) Exp(-z2) d(z2) 
 
The integral of P1, the Maxwellian, is unity, and the integral of P2 is 2/pi1/2, and the 
integral of P+ is y + 2/pi1/2. Therefore with probability y/[y + 2/pi1/2] we sample from 
P1, and with probability 2/pi1/2/[y + 2/pi1/2] we sample from P2.   
 
The basic idea of this approach isn't new. In principle this is the same approach used by 
the MCNP program (ref. 3), as far as modifying the rejection to be based on vr/[v + vt]. 
However, MCNP samples from the distributions after the transforming from mu to vr, 
resulting in more complicated functions of both v and vr that must be sample. With the 
THERMAL approach of sampling the target speed and direction directly, both P1 and P2 
are only a function of a single variable, target speed, z. 
 



Since both P1 and P2 are only a function of one variable it is relatively simple to develop 
a method to directly sample them with essentially no rejection; rejection at the 10-7 level 
for P1 and no rejection for P2. 
 
It's worth mentioning that this approach is more than just a mathematical trick to improve 
sampling efficiency. We can physically interpret P1 and P2 as the limiting high and low 
speed distributions, respectively.  
 
Lim y ----> 0              x P(z) --------> z P(z) = P2(z) 
 
Lim y -----> infinity   x P(z) --------> y P(z) = y P1(z) 
 
That is to say that as the neutron speed, y, approaches zero the relative speed, x, 
approaches the target speed, z, and we will always sample from P2(z). Similarly, as the 
neutron speed, y, becomes much larger than the target speed, z, the relative speed, x, 
approaches the neutron speed, and we will always sample from P1(z). Therefore 
physically this approach separates the original single distribution into two distributions 
that we can recognize as the low and high speed limiting contributions to the overall 
distribution.    
 
The sampling method I use is, 
 
1) select either P1 or P2. 
2) sample z, the scaled target speed, from either P1 or P2. 
3) sample mu, the direction of motion of the target, from an isotropic distribution 
4) define the relative speed, 
 
x2  = [y2 - 2 mu y z + z2] 
 
The original version of THERMAL always accepted this relative speed. This corresponds 
to the case of a 1/v, not constant, cross section, and was an error. Rather than sampling, 
 
P = x P*(z)/<x P*(z)> 
 
this was equivalent to replacing P*(z) by P*(z)/x and sampling, 
 
P = [x P*(z)/x]/<[x P*(z)/x]> = P*(z)/<P*(z)> = P*(z) 
 
only sampling a Maxwellian. This is equivalent to assuming a 1/v, rather than the 
intended constant cross section, which was an error in the original version of THERMAL. 
 
The current version of THERMAL correctly handles the constant cross case by accepting 
or rejecting on x/[y + z], [on rejection start over at 2), above] and the result is an unbiased 
sample of, 
  



P = x P*(z)/<x P*(z)>   
 
Compared to the original version of THERMAL, adding acceptance/rejection to the 
current version of THERMAL actually makes the algorithm faster. This is because the 
efficiency of acceptance is always very high, and the low speed, P2, treatment is 
somewhat faster than the high speed, P1, treatment. The original treatment was equivalent 
to always using the P1, Maxwellian, treatment, so adding the P1 treatment has resulted in 
an overall improvement in speed.  
 

Kinematics 
 
What makes THERMAL run so fast is its treatment of kinematics; the above selection of 
target speed and direction are a relatively small part of the overall method. 
 
THERMAL uses direction cosines, relative to the (x, y, z) axii. The direction cosines of 
the neutron are called (alpha, beta, gamma) and the components of the neutron speed are 
(vx, vy, vz), 
 
vx = alpha v, similarly for vy and vz. 
 
 The target and relative speed direction cosines and speeds are named (alphat, betat, 
gammat), (vxt, vyt, vzt),  and (alphar, betar, gammar), (vxr, vyr, vzr) respectively. 
 
The target speed, vt, is randomly sampled from a Maxwellian, and its direction cosines 
(alphat, betat, gammat) are randomly selected from an isotropic distribution, which define 
the components of the target speed (vxt, vyt, vzt). The components of the relative speed 
are then defined by adding the contributions of the neutron and target, 
 
vxr = vx - vxt, similarly for the y and z components. 
 
The relative speed is then, 
 
vr = [vxr2 + vyr2 + vzr2]1/2 
 
Assuming that vr has been accepted, in the Center of Mass system the speed of the 
neutron and target are, 
 
vcm-n = A vr/[A + 1] 
vcm-t =      vr/[A + 1] 
 
Since we assume that scattering is isotropic in the Center of Mass system the three new 
direction cosines of the neutron in the Center of Mass after the collision will be 
completely random and uncorrelated to its original direction cosines. Therefore we can 
randomly select three direction cosines (alphacm, betacm, gammacm) and components of 
the speed of the neutron in the Center of Mass system, 



 
vx-cm-n = vcm-n alphacm, similarly for the y and z components. 
 
The components of the final neutron speed are then defined by adding together the 
contributions of Center of Mass motion, randomly scattered neutron in the Center of 
Mass, and target speed, 
 
v'x = [vx + A{vx-cm-n + vxt}]/[A + 1], similarly for the y and z components. 
 
The final neutron speed is, 
 
v' = [v'x2 + v'y2 + v'z2]1/2 
 
and its direction cosines are, 
 
alpha'     = v'x/v' 
beta'       = v'y/v' 
gamma'  = v'z/v' 
 
which completely describes the scattered neutron and ends the sample.  
 
What makes this method is fast is the use of vectors to deal with each component of the 
speed separately and avoiding the tradition method of scattering through a cosine relative 
to the original neutron Center of Mass direction of motion, and then having to transform 
the original neutron Center of Mass direction cosines through the scattering cosine to 
define new neutron Center of Mass direction cosines. This has to be done when dealing 
with anisotropic scattering, where the initial and final direction cosines are correlated, but 
it does not have to be done when the scattering is isotropic. 
 
As described above, this problem can be completely avoided by using the components of 
the speed and assuming isotropic scattering in the Center of Mass system: just randomize 
the Center of Mass motion of the neutron and vectorially add the results. 
 
High Energy Treatment 
 
At low energy THERMAL includes thermal motion and solves the kinematics equations 
as described above. At higher energy THERMAL assumes no thermal motion and solves 
the equivalent equations described above. The transition between low and high energy 
treatments has been defined in THERMAL to insure a smooth transition between the two 
treatments. The transition point is a variable in THERMAL, which in the distributed 
version of THERMAL is (1000)1/2 times the average thermal speed of a neutron in the 
medium that it is interacting with, i.e., this means 1000 times the average thermal neutron 
energy. For example, for a medium at room temperature, 300 Kelvin, or about 1/40 eV, 
the thermal treatment extends up to 1000 times the average energy, or about 25 eV. By 
this point the average relative speed differs from the neutron speed by only less than 0.1 
%. 



 
The equations used at high energy are identical to those described above, with the 
additional assumptions: 1) the target speed is zero, 2) which implies the relative speed is 
equal to the neutron Lab speed. These two assumptions means that we do not have to 
sample and reject on relative speed. In which case we immediately know that the center 
of mass speed of the neutron is, 
 
vcm-n = A v/[A + 1] 
 
Again, since the scattering is isotropic in the center of mass system, we randomize the 
center of mass motion, and vectorially add together the contributions of Center of Mass 
motion, and randomly scattered neutron in the Center of Mass,  
 
v'x = [vx + A{vx-cm-n}]/[A + 1], similarly for the y and z components. 
 
The final neutron speed is, 
 
v' = [v'x2 + v'y2 + v'z2]1/2 
 
and its direction cosines are, 
 
alpha'     = v'x/v' 
beta'       = v'y/v' 
gamma'  = v'z/v' 
 
which completely describes the scattered neutron and ends the sample.  
 
Note, the similarity of this high energy treatment to the low energy treatment (the 
equations are exactly the same if we set vt = 0, vr = v), and its simplicity. It is this 
simplicity that makes this high energy treatment so efficient: on an IBM-PC Pentium Pro 
200 it can samples about 31 million scatters a minute. Even if you are not using the low 
energy THERMAL treatment you should not overlook the advantage of using the high 
energy treatment, all the way up to the highest energy where elastic scattering is isotropic 
in the center of mass system.  
 
Summary of Assumptions and Approximations 
 
It is important for the user to understand all of the assumptions I have used, so that you 
can understand the range of validity of the method. The assumption are, 
 
Sampling the Target Distribution 
 
1) The distribution of target nuclei is an isotropic Maxwellian; the so called free atom 
approximation. 
 



2) At low energy the elastic scattering is constant. Note, for the high energy treatment 
there is no restriction on the energy dependence of the elastic cross section. 
 
3) At high energy thermal motion is ignored. 
 
Kinematics of Collisions 
 
4) Scattering is isotropic in the center of mass system. 
 
5) Scattering is elastic. 
 
Those are the only assumptions and approximations used in the method. 
 
What's Next? 
 
One of the advantages of the THERMAL method is the simplicity of sampling the target 
and relative speed and direction. Compare the most widely used method of sampling the 
distribution in two independent variables, 
 
P(x, y) =  1/(pi1/2y) x2 d(x){Exp[-(x-y)2] - Exp[-(x+y)2} 
 
to the THERMAL method of directly sampling the target speed and direction from the 
given distribution of targets, 
 
P = x P*(z)/<x P(z)> 
 
P*(z) d(z) = 4/pi1/2 z2 Exp(-z2) d(z) 
<x P(z)> = [y + 1/(2y)] ERF(y) + 1/pi1/2 Exp(-y2) 
 
and accepting or rejecting on relative speed x/[y + 2/pi1/2],  
 
x2  = [y2 - 2 mu y z + z2]. 
 
First of all, in order to derive the equation for the most widely used method, 
 
P(x, y) =  1/(pi1/2y) x2 d(x){Exp[-(x-y)2] - Exp[-(x+y)2} 
 
we have to assume that the distribution of target nuclei is an isotropic Maxwellian. In 
principle all the THERMAL method says is sample from the distribution of target nuclei, 
whatever it is, and reject on relative speed. 
 
With the THERMAL method we are looking at and directly sampling the distribution of 
target nuclei, which is only a function of a single speed, or energy, dependent variable. 
Currently THERMAL assumes that the distribution of target nuclei is an isotropic 
Maxwellian. However, in principle we could use any distribution of target nuclei and 
sample it.  



 
What's next is to consider thermal scattering law data and see if it is possible to represent 
this data in a simpler form, where we can directly sample the distribution of target nuclei.  
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Quality Assurance 

  
This routine is distributed with a driver program TESTER that allows users to verify 
correct implementation of THERMAL and to test each step in the calculations. For those 
users who have the PLOTTAB code results can be immediately viewed (for a copy of 
PLOTTAB contact the author). 
  
Here TESTER will be used to verify the results of each step of the calculations. The steps 
that are verified include, 
  
1) Sampling a Maxwellian distribution 
2) Sampling the distribution of relative speed 
3) Calculation of average relative speed 
4) Time dependent thermalization 
5) Time independent thermalization 
 
 Dimensionless Variables 
 
When dealing with neutron thermalization it seems as if the equations involve an awful 
lot of different variables: neutron Lab speed, target speed, relative speed, temperature, the 
atomic weight of the target, etc., etc., etc. If one were to try to verify the accuracy of any 
computer program by using all combinations of these variables it would be an impossible 
task. 
 
In fact the equations really only involve a few independent variables. For the calculation 
of Doppler broadened cross sections and relative speed it is convenient to express 
everything in dimensionless form as multiplies of AE/KT, where A is the atomic weight, 
E is an energy, K is Boltzmann's constant, and T is temperature. In this dimensionless 
unit the results are only a function of a few variables and it is relatively simple to verify 
the accuracy of a computer code or routine (such as this one); this is the approach used in 
this report. 
 
Per Unit Speed or Energy 
 
Since THERMAL uses speed, rather than energy, all of the following results are per unit 
speed. For the convenience of those readers who are used to using energy here are the 
important relationships that you should understand, 
 
The slowing down spectrum will be 1/ v = c d(v)/v, rather than 1/E, 
 
c1 d(E)/E = c1 m v d(v)/v2 = c2 d(v)/v 
 
The thermal neutron density will be a Maxwellian, 
 
c1 E1/2 Exp[-b E2] d(E)  = c1 (m/2)1/2 v Exp[-bmv2/2] d(mv2/2) 



        = c2 v2 Exp[-b' v2] d(v) 
 
The thermal neutron flux will be v times a Maxwellian, 
 
c1 v E1/2 Exp[-b E2] d(E)  = c1 (m/2)1/2 v2 Exp[-bmv2/2] d(mv2/2) 
c3 E Exp[-b E2] d(E)          = c2 v3 Exp[-b' v2] d(v) 
 
Normalization of Results 
 
For comparison purposes all of the following figures illustrate both the expected results 
and the sampled results. For the results sampling a Maxwellian and relative speed results 
are normalized absolutely per sample. In these cases the expected and sampled results 
should lie exactly on top of one another with no bias. For the time dependent and time 
independent results I don't have the foggiest idea what the normalization should be for the 
expected results; I would have to run an actual transport calculation to determine the 
normalization. In these cases the expected results are normalized to agree with the 
maximum in the sampled results. In this case we expect the correct expected shape, but a 
slight bias causing sampled results to always lie slightly below the expected results. The 
reader should be aware of this normalization and not be disturbed by any slight bias in the 
magnitude of the expected and sampled results.   
 



 
Sampling a Maxwellian 

  
In dimensionless form a Maxwellian is, 
  
4/(pi)1/2*X2*Exp(-X2)*d(X) 
X = (b)1/2*Vt 
b = A/2KT 
 
A = atomic weight of target nuclei 
K = Boltzmann's constant 
T = temperature 
 
Note, the advantage of using dimensionless variables. Rather than having to verify that 
we can sample a Maxwellian and define target speed, vt, for various combinations of 
atomic weight and temperature, we need only verify that we can sample the 
dimensionless variable X. If we can accurately do this we will have verified that we can 
do this for any combination of variables.  
  
Figure 1 compares an exact Maxwellian to the results obtained randomly sampling using 
the THERMAL algorithm. When methodically sampled the THERMAL algorithm 
reproduces the integral of a Maxwellian to within 0.0001 % and the differential to within 
0.01 % over the entire range of X. Even when randomly sampled this figure illustrates the 
excellent agreement. On the left hand side of this figure the agreement is so good that it is 
hard to tell that there are two separate curves. On the right hand side of the figure we can 
see that across the important center of the Maxwellian even random sampling produces 
agreement to within about 0.1 %. 
  
Bottom line: the results verify that the THERMAL algorithm can accurately sample a 
Maxwellian. 
  



  
Sampling Relative Speed 

  
In dimensionless form the distribution of relative speeds is, 
  
1/(pi)1/2*Y2*{Exp[-(Y-X)2] - Exp[-(Y+X)2]}*d(Y)/X 
X = (b)1/2*Vn - Neutron laboratory speed 
Y = (b)1/2*Vr - Relative speed between neutron and target 
b = A/2KT 
 
Again note, with dimensionless variables, this distribution is only a function of X and Y. 
What we have to demonstrate is that for various fixed values of X (neutron Lab speed) we 
can accurately sample Y (relative speed). 
  
It is important to note I am not directly sampling this distribution. THERMAL samples a 
Maxwellian to define target speed, Vt, and an isotropic angular distribution to define the 
target direction cosines, and accepts or rejects on relative speed. The relative speed is 
defined as, 
  
Vr2 = [Vt2 + Vn2 + 2*COSVt*Vt*Vn] 
  
Therefore a critical step in quality assurance is to verify that the sampling method used by 
THERMAL actually reproduces the above distribution of relative speeds. 
  
The next three figures compare the exact distributions to the results obtained randomly 
sampling a Maxwellian to define target speed and an isotropic distribution and rejection 
on relative speed. 
  
Figure 2 includes results for small values of X = 0.001, 0.01, 0.1 and 1; neutrons that are 
extremely sub-thermal up to thermal energy. Again the agreement is so good that it is 
difficult to tell there are two curves on each plot, except at the low and high ends of the 
distribution where the probability is extremely low, so that not too many samples occur = 
poor statistics. 
  
Figure 3 includes results for X = 2, 3, 4 and 5. Compared to the previous low X results, in 
this X range the shape of the distribution is changing as the effect of the second 
exponential, Exp[-(Y+X)2], is becoming progressively smaller and eventually becomes 
insignificant. 
  
Figure 4 includes results for X = 6, 7, 8 and 10. Compared to the previous results by this 
X range the second exponential is completely insignificant and there is no longer any 
significant low energy "tail" to the distribution. Note the agreement over the entire range 
of relative speeds, except at the low and high ends of the distribution where the 
probability is extremely low, so that not too many samples occur = poor  statistics. 



  
Calculation of Average Relative Speed 

  
On the basis of the preceding results where it was verified that THERMAL can accurately 
sample the distribution of relative speeds, one could assume that it can also calculate the 
average relative speed. However, because of the importance of this quantity this will not 
be assumed - it will be verified. 
  
In dimensionless form in the case of an elastic scattering cross section that is constant in 
the relative system the average relative speed can be written in the form, 
  
<Y> = Sigcm*<Y*P(Y)*d(Y)>/<P(Y)*d(Y)> 
  
P(Y)*d(Y) = 1/(pi)1/2*Y2*{Exp[-(Y-X)2] - Exp[-(Y+X)2]}*d(Y)/X 
X = (b)1/2*Vn - Neutron laboratory speed 
Y = (b)1/2*Vr - Relative speed between neutron and target 
b = A/2KT 
  
The solution is, 
 
 <Y>     = [3/2 + X2]/[(X + 1/(2X)) ERF(X) + 1/(pi)1/2 EXP(-X2)] 
  
Table 1 presents results for a wide range of incident neutron speeds (X). In each case for a 
fixed incident neutron energy (X) results were randomly sampled. In this case I used A = 
1 (hydrogen) at room temperature (293 K), for incident neutron speed between 1/1000 
and 100 times thermal speed (thermal speed = 2200 meters/second = 2.2D-03 cm/shake). 
  



 
 All results are for various multiplies of [AE/KT]1/2. 
 
Results include 
1) V   - incident neutron speed 
2) <Vn*>  - average neutron speed after collision. 
3) <Vr>  - average relative speed. 
4) <Vt>  - average target speed. 
5) <Vr>/Vn - the ratio of average relative speed to incident neutron speed. 
    Both sampled and exact results are presented. 
6) %(S-E)/E - the per-cent difference between the sampled and exact results. 
7) %Accept      - the efficiency of relative speed acceptance 
8) Sec. - running time in seconds (per million samples) 
  
In this case the differences [%(S-E)/E] indicate that THERMAL can reproduce the correct 
average relative speed over the entire range to within about 0.1 % or better. Note, the 
dividing line between the low high energy treatment and high energy treatment (near X = 
30) - by this point the average relative speed is less than 0.1 % of the incident neutron 
speed, <Vr>/<V>. 
 
In this case the % acceptance [%Accept] is essentially 100 % at low and high neutron 
speeds and it has a minimum of about 69 % slightly above x = 1. As far as the overall 
running time, compared to the original THERMAL method, including rejection has 
actually improved the running time, e.g., in the original THERMAL report similar results 
are presented which showed that at low neutron speed it took about 10 seconds to sample 
1 million events; it now takes less than 7 seconds. 
 
Low and High Speed Sampling Times 
 
The above test involves a lot of overhead to tally results and as such is not a true test of 
the speed of the method. TESTER's low and high speed sampling test only involves 
repeated calling THERMAL with the minimum amount of overhead. Running this test 
demonstrates that on an IBM-PC Pentium Pro 200 THERMAL can sample about 9 
million scatters at low energy with thermal scattering and about 31 million a minute at 
high energy without thermal scattering. 
  
Bottom line: the results verify that the THERMAL algorithm can accurately reproduce 
the correct average relative speed. 



 
Pure Scattering, Infinite Medium - Time Dependent Results 

 
In a pure scattering (no absorption), infinite medium the equation to solve is,   
 
d[v N(v)]/d[t] + sig(v) v N(v) = Int [ sig(v' ---> v) v' N(v') d(v')] + S(v, t) 
 
Int[v] sig(v' ---> v) = sig(v'), implying no absorption, conservation of neutrons 
 
This equation does not have a finite, time independent solution. It's easy enough to 
understand why: if we have a time independent source S(v), we can think of this as 
adding the same number of neutrons to the system per unit time, and since they cannot 
disappear from the system, over time the number of neutrons in the system will approach 
infinity. If you prefer to think in terms of a time independent Monte Carlo calculation, 
consider sampling one source neutron and tracking it until it disappears from the system. 
Since there is no way for the neutron to disappear from the system, tracking even one 
source neutron will take an infinite amount of time, and the resulting flux distribution 
from even this one sampled neutron will approach infinity, as it continues moving from 
one energy to another in a Maxwellian distribution and thereby continues to contribute to 
the flux.  
 
In order to simulate this situation it is necessary to perform a time dependent calculation, 
starting from any fixed source distribution of neutrons at time zero, and allowing the 
distribution to evolve into a Maxwellian distribution in the number density of neutrons 
(not, flux or reaction rate - number density). The following results are based on a source 
that is instantaneous at time zero and monoenergetic, 
 
S(v, t) = Delta(v - v0) Delta(t) 
 
In the following examples neutrons were started at 1 keV, 40,000 times room temperature 
energy, 200 times room temperature speed, and are tracked in time as they approach a 
Maxwellian in neutron density. Starting at this energy we will see results using both the 
high energy THERMAL treatment without thermal scattering and the low energy 
treatment with thermal scattering. In each time interval the neutron flux is scored and 
presented on the following figures. Note, these results are neutron flux, so we expect the 
result to be neutron speed times a Maxwellian. 
 
Note, this is a secular equilibrium situation, where the neutrons continue to scatter from 
one speed to another, but on average the reaction rate at each speed (causing neutrons to 
leave speed v) is exactly balanced by the reaction rate at all other energies (causing 
neutrons to arrive at speed v). 
 
Verification 
 
Figure 5 illustrates results for slowing down in hydrogen. The time step has been defined 
to be constant, approximately equal to the average time between collisions for thermal 
neutrons. As such the early time results involving higher speed collisions (more collisions 



per second) include results only after the neutrons have undergone a number of collisions, 
i.e., don't expect to see anything that looks like the singly collided flux at the end of first 
time step. This figures shows results after each of the first 40 time steps. From this figure 
we can easily see the relaxation of the neutron flux into v times a Maxwellian (a 
Maxwellian neutron density). After about 20 time steps the distribution has completely 
relaxed. The results after the remaining time steps indicate that it remains stationary in 
this distribution. Additional time step results have been generated to insure that the 
distribution does stay in this form, as it will forever. The last portion of this figure shows 
the results across the important center of the distribution.  
 
The amount of "noise" in this last portion is because we are looking at the results at the 
end of 10 successive time steps overlayed on top of one another and since each time step 
has been defined to be the average time between collisions at thermal energy each neutron 
doesn't have much of a chance to contribute to the flux and the result is a great deal of 
variance in the distribution.  
 
Again, note, the normalization of the expected results is based strictly on the maximum of 
the sampled results, and therefore is slightly biased to lie above all of the sampled results 
near the peak of the distribution. As such the slight difference in the ratio from unity in 
the second figure does not indicate a real bias or problem with the results. If you "eyeball" 
in a properly normalized expected result as about 1 % lower than indicated on the figure, 
you can see that the sampled results across the important peak of the distribution are 
everywhere within about 1 % of the expected results. 
 
Time Dependent with Absorption 
 
We can also solve the time dependent equation with absorption. In this case we do not 
expect the distribution to relax into a Maxwellian and stay there forever. With absorption 
we expect the magnitude of distribution to decrease with time. If the absorption cross 
section is 1/v, it means the absorption reaction rate is the constant at all speeds, v sig(v) = 
constant, so that the rate of absorption will be the same at all energies. In this case as long 
as the absorption cross section is not too large compared to the scattering cross section, 
the distribution will relax into a Maxwellian and then decrease in magnitude with time. 
However it will not shift in energy away from a Maxwellian, since the absorption will be 
uniform at all energies, and as long as the scatter is sufficiently large compared to the 
absorption it will keep renewing the Maxwellian shape as it decreases in magnitude. 
 
Figure 6 illustrates slowing down in hydrogen with 1/v absorption. From this figure we 
can see the magnitude of the distribution decreasing with each time step, but no apparent 
shift or major distortion of the distribution from a Maxwellian neutron density. 
 
Atomic Weight Dependence 
 
The results using targets other than hydrogen (as used above), are similar to those 
obtained with hydrogen. The only difference is the time scale as which everything 
happens. For higher atomic weight targets the neutrons will have more collisions in order 



to slow down and relax into a Maxwellian, but eventually they will relax into exactly the 
same Maxwellian shape found for slowing down in hydrogen. 
 
Figure 7 illustrates slowing down in  U238 without absorption. Due to the high atomic 
weight it takes many more time steps to thermal, but eventually once again we see a final 
distribution corresponding to a Maxwellian neutron density.   
 



 
Absorption, Infinite Medium - Time Independent Results 

 
In the case where there is absorption the time independent equation is, 
  
sigt(v) v N(v) = Int [ sig(v' ---> v) v' N(v') d(v')] + S(v) 
 
sigt(v) = sig(v) + siga(v) 
 
Int[v] sig(v' ---> v) = sig(v') 
 
sigt(v)    = total cross section 
sig(v)     = elastic scattering cross section 
siga(v)    = absorption cross section 
S(v)        = time independent source 
 
I present here time independent results using a constant relative elastic scattering cross 
section and a 1/v absorption cross section, which is a good representation of the low 
energy absorption cross section in many materials. In later figures I will also use a single 
level Breit-Wigner resonance to illustrate the importance of resonance absorption. In 
general the cross section used will be, 
 
sig(v) = Elastic + Capture (vrt/v) + Res width2/[ width2 + (v2 - vr2)2] 
 
Elastic   = Doppler broadened elastic cross section (relative cross section = constant =1) 
Capture = Magnitude of 1/v cross section, normalized at vrt, room temperature speed 
Res       = Maximum of resonance 
width    = Width of resonance 
vr          = Speed (energy) of resonance peak 
 
As long as there is some absorption cross section this problem will lead to a finite, time 
independent solution. Starting from a monoenergetic neutron source well above thermal 
energy (at 1 keV) what we see is a typical slowing down spectrum, going over into a 
Maxwellian like distribution at lower energies. I say "Maxwellian like", because for a 
small amount of absorption the result will be very close to a Maxwellian, but as 
absorption is increased the spectrum will harden and significantly differ from a 
Maxwellian. 
 
The following figures illustrate the neutron flux [v time neutron number density] that 
results from these calculations. Note, the results are compared to v times a Maxwellian, to 
simulate neutron flux, not density. 
 
Verification 
 
In figure 8 we consider room temperature hydrogen. The first two figures illustrate results 
with only elastic scattering and 1/v capture, where the capture is normalized to be 1/1000-



th the elastic cross section at room thermal energy. Since the capture is quite small, in this 
case we expect the result to be very close to a Maxwellian neutron number density (v 
Maxwellian flux), which is exactly what we see. The first figure shows results over the 
entire range, and the second shows results over the important middle of the distribution. 
 
Again, note, the normalization of the expected results is based strictly on the maximum of 
the sampled results, and therefore is slightly biased to lie above all of the sampled results 
near the peak of the distribution. As such the slight difference in the ratio from unity in 
the second figure does not indicate a real bias or problem with the results. If you "eyeball" 
in a properly normalized expected result as about 1 % lower than indicated on the figure, 
you can see that the sampled results across the important peak of the distribution are 
everywhere within about 1 % of the expected results.  
 
Capture Dependence 
 
Figure 9 shows results for a variety of values of the capture: compared to the elastic, 
1/1000-th, 1/100-th, 1/10-th, and 1, at room temperature thermal energy. Note, over a 
wide range of capture the magnitude of the spectrum scales as 1/capture, and stays close 
to the expected v Maxwellian, until the capture becomes large. Since a 1/v cross section 
means the reaction (capture) rate is the same at all energies, v sig(v) = constant, this is the 
expected result, where a small amount of 1/v absorption doesn't shift the spectrum; it 
merely absorbs equally from all parts of the spectrum, decreasing the overall magnitude 
of the neutron flux. For larger values of capture the spectrum will harden and 
significantly deviate from a Maxwellian, as we can see from this figure. 
 
Temperature Dependence 
 
Figure 10 illustrates the effect of temperature. In this figure I have decreased and 
increased the temperature by an order of magnitude from room temperature to present 
results at 30, 300, and 3000 Kelvin. Decreasing temperature moves the spectrum into a 
range of higher capture cross sections, due to the 1/v capture used here, and conversely 
increasing temperature moves the spectrum into a range of lower capture cross section. 
One might expect that in this case the resulting spectrum would increase with temperature 
as the spectrum is moved progressively further away from the 1/v capture cross section. 
NOT!!! Remember 1/v capture means a constant capture rate at all energies, v sig(v) = 
constant. Therefore changes in temperature have no overall effect on the magnitude of the 
spectrum, i.e., it is merely shifted in energy to correspond to the temperature, which is 
exactly what we see in this figure. 
 
These results may disturb anyone who is used to nuclear reactors being inherently nuclear 
stable, in the sense that any increase in temperature will tend to decrease the neutron flux 
and return the reactor to a stable condition. Not to worry; they are nuclear stable, but not 
due to the typical low 1/v absorption cross sections in fissile materials. A more important 
effect, not included in the above results, are low energy absorption resonances.  
 
In order to illustrate this effect figure 11 includes temperature dependent results including 
a low energy absorbing resonance at about 0.25 eV. This resonance is at an energy 



roughly 10 times more than room thermal energy, which means only Sqrt(10) in speed 
above room thermal. The following figure illustrates that when even one low energy 
resonance is included increasing temperature leads to a decrease the neutron flux, and 
therefore an inherently nuclear stable situation. Note, the depression in the neutron flux 
near 0.007 cm/shake due to the absorbing resonance.       
 
Atomic Weight Dependence 
 
Increasing target atomic weight will cause neutrons to have more collisions in slowing 
down toward a Maxwellian. With a 1/v capture cross section, or constant reaction rate, v 
sig(v) = constant, at each collision there is a chance that the neutron will be absorbed and 
not reach thermal energies. The more collisions a neutron has the more chance it will be 
absorbed, and since with increasing target weight it will have more collisions, we expect 
to see atomic weight depend results. 
 
The last two figures of this section illustrate results for target atomic weights, A = 1, 10, 
40 and 100. In this first case there is 1/v absorption and in the second case 1/v and 
resonance absorption. In both cases at high energies we see the expected increase with 
atomic weight in the 1/v slowing down spectrum, i.e., since for higher atomic weight 
neutrons lose less energy per collision, they have more collisions per unit energy and 
contribute more to the flux per unit energy. With only 1/v absorption (figure 12) we see 
only a moderate atomic weight dependence. With 1/v and resonance absorption (figure 
13) we see a much stronger atomic weight dependence. In this case by thermal energy we 
see a decrease in the neutron flux with increasing atomic weight because fewer neutrons 
have survived the slowing down process through the resonance and must undergo even 
more collisions in attempting to relax into a Maxwellian. 
 
If you look closely you will see something that you have only read about in textbooks. 
This problem is a monoenergetic source in an infinite medium, which leads to Placzek 
oscillations in the slowing down spectrum. This effect can only be seen clearly in the A = 
10 results; the scoring bins are too coarse to resolve this effect for the higher atomic 
weights. For the A = 10 results note the discontinuity in the slowing down density near 
0.4 cm/shake (near the upper speed limit of the figure). This is the discontinuity predicted 
by Placzek due to single collided neutrons not being able to scatter to lower energies.  
 
 



Collision by Collision Results 
 

In the original THERMAL report results were presented illustrating that the old 
THERMAL method, without rejection on relative speed, leads to a Maxwellian 
distribution when neutrons are tracked collision by collision. That is to say, a number of 
neutrons were each tracked through exactly the same number of collisions and the 
distribution of neutrons after each collision were presented in the original THERMAL 
report. The results as presented are correct, but misleading. Again, as stated above, the 
original THERMAL method was erroneously in that it was equivalent to assuming a 1/v, 
not a constant cross section, and it was this assumption that led to the Maxwellian, as 
explained below. 
 
With the new THERMAL method when neutrons are tracked collision by collision the 
result is not a Maxwellian; the result is the reaction rate times a Maxwellian, 
 
v sig(v) M(v) d(v) 
 
Only in the case of a 1/v cross section (v sig(v) = constant) will the results by a 
Maxwellian - which is exactly what the original THERMAL method was erroneously 
assuming, leading to the results presented in the original THERMAL report. 
 
The reason that collision by collision results do not lead to a Maxwellian when starting 
from a constant relative cross section is because this does not correspond to the real 
physical situation. In the real physical situation neutrons at different energies are 
interacting at different rates, and only by considering time (not collision by collision) can 
we simulate the real situation. 
 
Note, in the case of a 1/v cross section, v sig(v) = constant, the neutrons are interacting at 
the same rate at all energies, and on average moving along at the same collision by 
collision rate. That's why the original THERMAL method collision by collision resulted 
in a Maxwellian.   
 
Bottom line: The original THERMAL method is incorrect and should not be used. 
The Maxwellian results presented in the original THERMAL report are misleading in the 
sense that these results correspond to assuming a 1/v, not the constant relative cross 
section that was intended - Sorry about that sports fans!!! 



Comments from THERMAL 
 

Documentation 
 
This routine is designed to be self-documenting, in the sense that the latest documentation 
for the routine is included as comment lines at the beginning of the routine. Reports, such 
as this one, are periodically published. However, the user should be aware that the 
comment lines within the routine are continuously updated to reflect the most recent 
status of the routine and these comment lines must always be considered the most recent 
documentation. Therefore the user is advised to always read the comment lines within the 
routine. 
  
The remainder of this report consists of a listing of the documentation that appears at the 
beginning of the THERMAL routine. 
 



 
      SUBROUTINE THERMAL(ATWT,TEMPE) 
C 
C 
C     NEUTRON THERMAL SCATTERING ROUTINE 
C     VERSION 95.1 (FEBRUARY 1995) 
C  VERSION 95.2 (SEPTEMBER 1995) *COMPLETELY REPLACES ORIGINAL 
C                                                                  95.1 VERSION - WHICH ERRONEOUSLY 
C                                                                  CALCULATED RESULTS FOR A 1/V, 
C                                                                  RATHER THAN CONSTANT, ELASTIC 
C                                                                  SCATTERING CROSS SECTIONS.                                    
C      
C     Written by 
C     Dermott E. Cullen 
C     University of California 
C     Lawrence Livermore National Laboratory 
C     L-59 
C     P.O. Box 808 
C     Livermore, CA 94550 
C     U.S.A. 
C 
C     Tele:    415-423-7359 
C     E. Mail: cullen1@llnl.gov 
C 
C     PURPOSE 
C      
C     Calculate elastic scattering that is isotropic in the center of 
C     mass system. At low energies thermal motion will be included. 
C     At high energies the target nuclei are assumed to be stationary. 
C     The point of transition between low and high energies has been 
C     defined to insure a smooth transition. 
C 
C     It is assumed that at low energy the elastic cross section is 
C     constant. At high energy the cross section can be of any form. 
C 
C     You can use this routine for all energies where the elastic 
C     scattering is isotropic in the center of mass system. In most 
C     materials this will be a fairly high energy. 
C 
C     RELATED ROUTINES 
C      
C     This routine is designed to be used in conjunction with the 
C     SIGMA1 method of Doppler broadening cross sections. It is assumed 
C     that the laboratory system cross sections you use in your Monte 
C     Carlo calculations have been pre-calculated using the SIGMA1 
C     method. See, Ref. 1 & 2 for SIGMA1 documentation. 
C 



C     The approach used here is consistent with that used in the SIGMA1 
C     method of Doppler broadening cross sections. If you have used the 
C     SIGMA1 method of Doppler broadening cross sections the reaction 
C     rates that you obtain using this routine will be completely 
C     consistent. If you have not Doppler broadened your cross sections 
C     the low energy reaction rate calculated by this routine will be 
C     higher than those predicted by your cross sections. 
C 
C     WARNING 
C      
C     You must call THERM0 once to initialize parameters before you 
C     call this routine the first time - you need only call THERM0 once. 
C 
C     DYNAMIC PARAMETERS 
C      
C     ATWT   = Target atomic weight in neutron mass units 
C     TEMPE  = Target temperature in MeV, e.g., 293 K = 2.53d-08 MeV 
C                        (to use temperature in Kelvin see the below instructions) 
C     VNOW   = Neutron speed in cm/shake (shake=1.0-8 seconds) 
C                        (see THERM0 if you are using any other units) 
C     ALPNOW = Neutron direction cosine relative to X axis 
C     BETNOW = Neutron direction cosine relative to Y axis 
C     GAMNOW = Neutron direction cosine relative to Z axis 
C 
C     PARAMETER INTERFACE 
C      
C     This routine passes ATWT and TEMPE as arguments and the remaining 
C     variables are passed through COMMON/WHERENOW/. If you wish to use 
C     a different convention you need merely add additional variables 
C     as arguments and delete COMMON/WHERENOW. 
C 
C     STATIC PARAMETERS 
C      
C     EROOM  = 2.53D-08 MeV (room temperature thermal energy) 
C     VROOM  = 2.20D-03 cm/shake (room temperature thermal speed) 
C     VNMIN  = 5.00D-04 cm/shake (minimum TART speed) 
C                        (see THERM0 if you are using any other units) 
C     VNMAX  = SQRT(1000.0) - at higher incident speeds ignore 
C                         thermal motion - this means up to 1000 times the 
C                         average thermal energy. 
C 
C     COMPLETE ISOTROPIC ELASTIC SCATTERING 
C      
C     This routine will handle elastic scattering at the energies where 
C     scattering is isotropic in the center of mass system. At lower 
C     incident energies thermal motion will be included. At higher 
C     incident energies thermal motion will not be included. The 



C     dividing line between the two treatments is controlled by (VNMAX), 
C     presently defined to be SQRT(1000). When the incident neutron 
C     speed is greater than (VNMAX) times the average thermalized 
C     neutron speed thermal motion is not included; otherwise it is 
C     included. 
C 
C     (VNMAX) has been defined to insure a smooth transition between 
C     the high and low energy treatments. For (VNMAX) = SQRT(1000), the 
C     incident energy must be 1000 times the temperature of the medium, 
C     e.g., at room temperature of 0.0253 eV, thermal motion will be 
C     included up to about 25 eV. By this energy the average relative 
C     speed between neutron and target is within 0.1 % of the neutron 
C     speed. 
C 
C     ASSUMPTIONS AND RESTRICTIONS 
C      
C     It is assumed that at low energy in the relative frame the elastic 
C     scattering cross section is constant and that the target nuclei 
C     are distributed in an isotropic Maxwellian in the laboratory 
C     system, i.e., the so called free atom assumption. 
C 
C     For light isotopes the elastic cross section is constant to 
C     fairly high energy, so that this assumption is valid to describe 
C     the important slowing down in moderators. For heavy isotopes 
C     this assumption may no longer be valid above the eV energy 
C     range, but will be valid near thermal energies. 
C 
C     For a number of important moderators binding effects are very 
C     important, so that the free atom assumption is no longer valid. 
C     I recommend that you use the ENDF/B thermal scattering law data 
C     whenever possible. However, since thermal scattering law data is 
C     only available for a relatively small number of materials, in 
C     cases where this data is not available I recommend that you use 
C     this routine as an approximation to thermalization. 
C 
C     ISOTROPIC VS. NON-ISOTROPIC ELASTIC SCATTERING 
C      
C     Isotropic elastic scattering in the center of mass system allows 
C     the calculations to be greatly simplified and sped up. In this 
C     case the contributions of the neutron and target to the motion 
C     of the center of mass remain fixed through the collision (as they 
C     always do) and the motion of the neutron in the center of mass 
C     becomes random in direction. 
C 
C     In this case all we need do is randomize the center of mass 
C     direction of the neutron (randomly select 3 new direction cosines 
C     that are completely uncorrelated to the original direction cosines 



C     of the neutron) and then vectorially add it to the motion of 
C     the center of mass to define new laboratory neutron speed and 
C     directions; we do not have to worry about scattering through a 
C     given angular distribution, where the final direction cosines are 
C     correlated to the original direction cosines, and the subsequent 
C     transformation back to the laboratory system. 
C 
C     This approach is valid at both high and low energies; the only 
C     difference between the two treatments being that at high energy 
C     the target is assumed to be stationary, so that its motion is not 
C     included in the vectorial addition used to define the new neutron 
C     speed and directions. 
C 
C     RUNNING TIME 
C      
C     On an Pentium Pro 200 the high energy treatment can sample over 31 
C     million histories in per minute and the low energy treatment can 
C     sample about 9 million histories per minute. 
C 
C     UNITS 
C      
C     As distributed this routine assumes energy in MeV and speed in 
C     cm/shake. Everything is normalized to the variables, 
C     EROOM = 2.53D-08 MeV (room temperature thermal energy) 
C     VROOM = 2.20D-03 cm/shake (room temperature thermal speed) 
C     VNMIN = 5.00D-04 cm/shake (minimum TART speed) 
C 
C     To use any other units (e.g., eV and cm/second) all you need do is 
C     re-define these constants (see, ENTRY THERM0). 
C 
C      USING KELVIN TEMPERATURE 
C 
C      If you temperature is in Kelvin, instead of energy, activate 
C      the coding at the end of this routine to re-define BROOM. 
C      BROOM is used to normalize input temperature to room temperature. 
C      As presently defined it uses room temperature energy, EROOM, 
C      in MeV to do this, which is appropriate for input temperature in 
C      MeV. For input temperature in Kelvin all you have to do is use 
C      room temperature in Kelvin, TROOM, instead of room temperature 
C      energy, EROOM. See, the presently commented out coding at the 
C      end of this routine to do this. 
C 
C     MINIMUM ALLOWABLE SPEED 
C      
C     You do not want to accept speeds which are below the minimum 
C     energy of your neutron cross section data - any events that 
C     result in a lower speed will be rejected. 



C 
C     See THERM0, which includes the minimum allowable speeds for users 
C     of the TART-175 group structure (minimum energy 1.307D-09 MeV), 
C     ENDL (minimum energy 1.0D-10 MeV) or ENDF/B (minimum energy 
C     1.0D-11 MeV). If you are using one of these merely select the 
C     correct one in THERM0. If you are using some other data set you 
C     will have to either define the minimum in THERM0, or set the 
C     minimum in THERM0 to 0.0 and handle these cases as they are 
C     returned to you by this routine. If you do nothing you will be 
C     using the TART minimum allowable speed by default. 
C 
C     PRECISION 
C      
C     This routine treats everything in REAL*8 = double precision on 
C     workstations, single precision on a CRAY. I recommend that you 
C     only use this routine in REAL*8 - otherwise CAVEAT EMPTOR!!!! 
C 
C     RANDOM NUMBER GENERATOR 
C      
C     The distributed version of this routine uses a random number 
C     generator - RANF() - if this is not the random number generator 
C     used on your computer you need merely change RANF() to the name 
C     of your random number generator - remember, whatever routine you 
C     use must be REAL*8. 
C 
C     SAMPLING A MAXWELLIAN 
C      
C     A good approximation to sampling a Maxwellian is to randomly 
C     select X using, 
C 
C     X = Sqrt(-Log(R1*(1-R2**2))), R1 and R2 random numbers 
C 
C     The Maxwellian and the distribution resulting from the above 
C     distribution were equated, 
C 
C     F(Y)*d(Y) = G(X)*d(X) 
C 
C     Integrating, 
C 
C     F(Y)      = G(X) 
C 
C     The sampled values of X from the above distribution were fit 
C     to reproduce the sampled values of Y from the Maxwellian, 
C 
C     Y = X/(((C3MAX*X+C2MAX)*X+C1MAX)*X+C0MAX) 
C 
C     The result is a sampling method that reproduces the integral 



C     of a Maxwellian to better than 0.0001 % and the differential 
C     Maxwellian to better than 0.01 % over the entire range. 
C 
C     The last step is to reject extremely low probability large 
C     values of Y. In the distributed version of this routine the 
C     rejection is controlled by XMAX which is = 4. The integral of 
C     a Maxwellian up to X = 4 is 1 - 5.0D-07, i.e., the probability 
C     of sampling an X above 4 is 5.0D-07, so that sampling efficiency 
C     is essentially 100 %. 
C 
C     METHOD 
C      
C     The Doppler broadening equation is, 
C 
C     V*Sig(V) = INT[0,INFINITY] Vr*Sig(Vr)*P(Vr)*d(Vr) 
C 
C     The distribution of relative speeds is defined by, 
C 
C     P(Vr) = Vr*Sig(Vr)*P(Vt)*d(Vt)/[V*sig(V)] 
C 
C     This is the distribution that must be sampled. This distribution 
C      is closely related to the Doppler broadening equation. We will 
C      solve this equation by solving, 
C 
C      P = P(Vt)*d(Vt) 
C 
C      and rejecting on Vr*Sig(Vr), actually only on Vr, since we will 
C      assume that Sig(Vr) is constant. 
C 
C     The Doppler broadening equation is a conservation equation, where 
C     we want to define the Lab cross section, Sig(V), to conserve the 
C     reaction rate that is occurring in the relative system; it is 
C     important to understand we are conserving reaction rate, not 
C     cross section. 
C 
C     P(Vr) must be defined such that, 
C 
C     V*Sig(V) = <Vr*Sig(Vr)> = <Vr*Sig(Vr)*P(Vr)>/<P(Vr)> 
C 
C     produces the correct average reaction rate <Vr*Sig(Vr)>, in 
C     which case we will have properly defined the Lab, Doppler 
C     broadened cross section, Sig(V), to obtain the same observed 
C     reaction rate in Lab and relative systems. 
C 
C     The starting point for deriving the above equation is, 
C 
C     V*Sig(V) = INT[-1,+1]d(COS)/2*INT[Vt:Vr>0]Vr*Sig(Vr)*P(Vt)d(Vt) 



C 
C     where the 2 integrals are over the target angular and energy 
C     distributions. The only assumption is that the target distribution 
C     is isotropic. We can rewrite this in the form, 
C 
C     V*Sig(V) = INT[COS] INT[Vt] Vr*Sig(Vr)d(COS)/2*P(Vt)d(Vt) 
C 
C     In which case the proper P(Vr)d(Vr) to use is, 
C 
C     d(COS)/2*P(Vt)d(Vt) 
C 
C     In the general case with an energy dependent cross section Sig(Vr) 
C     sampling this distribution will sample Vr*Sig(Vr) and it is very 
C     difficult to separate the two and define Vr and Sig(Vr). However, 
C     in the case of a constant cross section this distribution will 
C     sample Vr; based on the sampled target speed Vt and direction 
C     COS we can immediately define the relative speed Vr and direction, 
C 
C     Vr = Sqrt[Vt**2+V**2+2*COS*V*Vt] 
C 
C     with no preferential treatment of any Vr. In this case there are 
C     no restrictions on the range of COS and Vt, i.e., we can sample 
C     any Vt and still be able to sample the entire range of COS such 
C     that we can always define a relative speed. 
C 
C     In other words independently sample the isotropic angular 
C     distribution d(COS)/2 and the distribution of target speeds 
C     P(Vt)d(Vt) to define a relative speed, Vr. I say "a" rather than 
C     "the" relative speed because we will accept/reject Vr, as 
C     described below. 
C 
C     Note, this is a general result which applies to any isotropic 
C     target distribution (isotropic, so that the angular and 
C     energy distributions are not correlated). Here I will assume 
C     P(Vt)d(Vt) is a Maxwellian, in which case we have the familiar 
C     Doppler broadening equation, 
C 
C     V*Sig(V) = INT[0,INFINITY] Vr*P(Vr)*d(Vr) 
C 
C     P(Vr)*d(Vr) = C*(Vr/V)*[Exp(-(V-Vr)**2) - Exp(-(V+Vr)**2)] 
C 
C     V*Sig(V) = <Vr*P(Vr)*d(Vr)>/<P(Vr)*d(Vr)> 
C                        = <Vr> 
C 
C     Sig(V)       = <Vr>/V 
C 
C     At high energies (speeds) where the target speed becomes 



C     insignificant the relative speed approaches the neutron 
C     speed and the Doppler broadened cross section approaches 
C     a constant. At low energies (speeds) where the neutron speed 
C     becomes insignificant the relative speed approaches the 
C     average target speed (a constant) and the Doppler broadened 
C     will increase; at very low energies it will increase as 1/V. 
C 
C     LOW SPEED 
C      
C     The target nuclei are distributed as a Maxwellian, 
C 
C     Maxwellian   = 4/Sqrt(Pi)*B**3/2*Vt**2*Exp(-B*Vt**2)*d(Vt) 
C     B            = ATWT/(2*KT) 
C     X            = Sqrt(B)*Vt 
C     d(X)         = Sqrt(B)*d(Vt) 
C     Maxwellian   = 4/Sqrt(Pi)*X**2*Exp(-X**2)*d(X) 
C 
C     We must sample, 
C 
C      P = Vr*Maxwellian 
C 
C     To improve sampling efficiency multiply and divide by 
C     [V + Vt]. The result is two distributions, 
C 
C      P = [Vr/(V + Vt)][V*P1 + P2] 
C 
C      P1 = Maxwellian 
C      P2 = Vt*Maxwellian 
C 
C      We will sample [V*P1 + P2] and reject on [Vr/(V + Vt)]. 
C  
C      The integral of P1 is unity and the integral of P2 is 
C      2/(B*PI)**1/2 and the integral of [V*P1 + P2] is 
C      V + 2/(B*PI)**1/2. 
C 
C      Therefore with probability V/[V + 2/(B*PI)**1/2] we will 
C       sample from P1, otherwise we will sample from P2. 
C 
C       The entire sampling procedure is then, 
C 
C   1) Select either P1 or P2 to sample. 
C 
C  2) Sample the target speed Vt from P1 and P2. 
C 
C  3) The target nuclei are isotropic in the lab system. Sample to 
C     define the target direction cosines (AT, BT, GT) 
C 



C  4) The relative speed is, 
C 
C     VRX   = ALPNOW*VNOW - AT*VT 
C     VRY   = BETNOW*VNOW - BT*VT 
C     VRZ   = GAMNOW*VNOW - GT*VT 
C     VR**2 = VRX**2 + VRY**2 + VRZ**2 
C 
C  5) Accept or Reject on relative speed. If rejected start over 
C       at 2), otherwise proceed to 6). 
C  
C  6) Isotropically scatter in the center of mass system. Randomly 
C     sample relative direction cosines (AS, BS, GS). 
C 
C     In the center of mass system, 
C     VNCM = VR*ATWT/(1+ATWT)      = Center of mass neutron speed 
C     VCM  = VR/(1+ATWT) = VR-VNCM = Center of mass speed 
C 
C     Note, in the following equations the factor 1/(1+ATWT) is 
C     omitted, except in the definition of the final neutron speed. 
C 
C  7) Vectorially add the center of mass, neutron and target speeds to 
C     define new components of the neutron speed, 
C 
C     VX'     = [ALPNOW*VNOW + ATWT*(AS*VR + AT*VT)] 
C     VY'     = [BETNOW*VNOW + ATWT*(BS*VR + BT*VT)] 
C     VZ'     = [GAMNOW*VNOW + ATWT*(GS*VR + GT*VT)] 
C 
C  8) The new neutron speed is, 
C 
C     VNOW'   = Sqrt[VX'**2 + VY'**2 + VZ'**2]/(1 + ATWT) 
C 
C     and the new direction cosines are, 
C 
C     ALPNOW' = VX'/SQRT(VX'**2 + VY'**2 + VZ'**2) 
C     BETNOW' = VY'/SQRT(VX'**2 + VY'**2 + VZ'**2) 
C     GAMNOW' = VZ'/SQRT(VX'**2 + VY'**2 + VZ'**2) 
C 
C  9) If VNOW' is less than the minimum acceptable speed (VNMIN), 
C     reject and start over at 1) 
C 
C     Otherwise return the sampled values. 
C 
C     HIGH SPEED 
C     
C     The target nuclei are assumed to be stationary. The treatment 
C     is a simplified version of the low speed treatment with, 
C 



C     Vt = 0 
C     Vr = Vn 
C 
C  1) Isotropically scatter in the center of mass system. Randomly 
C     sample relative direction cosines (AS, BS, GS). 
C 
C  2) Vectorially add the center of mass and neutron speeds to define 
C     new components of the neutron speed, 
C 
C     VX'     = [ALPNOW + ATWT*AS] 
C     VY'     = [BETNOW + ATWT*BS] 
C     VZ'     = [GAMNOW + ATWT*GS] 
C 
C  3) The new neutron speed is, 
C 
C     VNOW'   = VNOW*SQRT[VX'**2 + VY'**2 + VZ'**2]/(1 + ATWT) 
C 
C     and the new direction cosines are, 
C 
C     ALPNOW' = VX'/SQRT(VX'**2 + VY'**2 + VZ'**2) 
C     BETNOW' = VY'/SQRT(VX'**2 + VY'**2 + VZ'**2) 
C     GAMNOW' = VZ'/SQRT(VX'**2 + VY'**2 + VZ'**2) 
C 
C  4) If VNOW' is less than the minimum acceptable speed (VNMIN), 
C     reject and start over at 1) 
C 
C     Otherwise return the sampled values. 
C 
C     FINAL TARGET SPEED AND DIRECTION 
C      
C     If you are interested in the final target speed and direction, 
C     e.g., neutrons incident on hydrogen producing protons, the 
C     equations are very similar. In the center of mass system if 
C     after the collision the neutron is moving with direction cosines 
C     (+AS, +BS, +GS), the target is moving with direction cosines 
C     (-AS, -BS, -GS). 
C 
C     Relative to the target the direction of the center of mass is 
C     the reverse of that relative to the neutron. 
C 
C     All you need do is vectorially add the center of mass, neutron 
C     and target speeds to define the final target speed (VXT', 
C     VYT', VZT'), just as was done for the neutron to define (VX', 
C     VY', VZ') and then the above equations can be used to define 
C     the final target speed and directions. 
C 
C     Starting from the above equations, exchange neutron and target, 



C     and reverse the center of mass directions, 
C 
C     VXT'     = [AT*VT - ATWT*(AS*VR + ALPNOW*VNOW)] 
C     VYT'     = [BT*VT - ATWT*(BS*VR + BETNOW*VNOW)] 
C     VZT'     = [GT*VT - ATWT*(GS*VR + GAMNOW*VNOW)] 
C 
C     That's the good news - the bad news is since this routine is 
C     restricted to isotropic scattering in the center of mass the 
C     energies involved will be relatively small and you will never 
C     have very energetic final targets - so this routine will be 
C     of little practical use to generate energetic targets, e.g., 
C     for neutrons on hydrogen at these low energies you will never 
C     generate very energetic protons. 
C 
C     REFERENCES 
C      
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C 
C  2) "The 1994 ENDF Pre-processing codes", by D. E. Cullen, IAEA-NDS-39 
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  All speeds are multiplies of [A/KT]**1/2 
 =============================================================================== 
 V         <Vn*>     <Vr>      <Vt>      <Vr>/<Vn> <Vr>/<Vn> %      %       Sec. 
                                         Sampled   Exact    (S-E)/E Accept 
 =============================================================================== 
 1.000D-03 8.862D-01 1.329D+00 1.329D+00 1.329D+03 1.329D+03  -0.01  99.90   5.9 
 1.259D-03 8.876D-01 1.331D+00 1.331D+00 1.057D+03 1.056D+03   0.09  99.89   5.9 
 1.585D-03 8.854D-01 1.329D+00 1.329D+00 8.384D+02 8.388D+02  -0.04  99.86   5.8 
 1.995D-03 8.863D-01 1.329D+00 1.329D+00 6.662D+02 6.662D+02   0.00  99.82   5.5 
 2.512D-03 8.869D-01 1.330D+00 1.330D+00 5.294D+02 5.292D+02   0.04  99.78   5.6 
 3.162D-03 8.867D-01 1.329D+00 1.329D+00 4.204D+02 4.204D+02   0.01  99.73   5.9 
 3.981D-03 8.856D-01 1.329D+00 1.329D+00 3.337D+02 3.339D+02  -0.05  99.65   5.9 
 5.012D-03 8.864D-01 1.330D+00 1.330D+00 2.653D+02 2.652D+02   0.03  99.56   6.0 
 6.310D-03 8.859D-01 1.329D+00 1.329D+00 2.107D+02 2.107D+02  -0.01  99.44   6.0 
 7.943D-03 8.863D-01 1.329D+00 1.329D+00 1.673D+02 1.674D+02  -0.02  99.30   6.0 
 1.000D-02 8.857D-01 1.329D+00 1.329D+00 1.329D+02 1.329D+02  -0.01  99.12   5.7 
 1.259D-02 8.866D-01 1.330D+00 1.329D+00 1.056D+02 1.056D+02   0.01  98.91   5.4 
 1.585D-02 8.860D-01 1.329D+00 1.329D+00 8.388D+01 8.388D+01   0.00  98.64   5.9 
 1.995D-02 8.861D-01 1.329D+00 1.329D+00 6.663D+01 6.663D+01  -0.01  98.27   6.0 
 2.512D-02 8.863D-01 1.330D+00 1.329D+00 5.294D+01 5.293D+01   0.01  97.85   6.0 
 3.162D-02 8.863D-01 1.329D+00 1.329D+00 4.203D+01 4.205D+01  -0.05  97.32   6.0 
 3.981D-02 8.865D-01 1.330D+00 1.329D+00 3.340D+01 3.341D+01  -0.02  96.68   6.0 
 5.012D-02 8.872D-01 1.330D+00 1.329D+00 2.654D+01 2.655D+01   0.00  95.85   6.0 
 6.310D-02 8.874D-01 1.331D+00 1.329D+00 2.110D+01 2.110D+01   0.02  94.86   5.8 
 7.943D-02 8.881D-01 1.332D+00 1.328D+00 1.677D+01 1.677D+01  -0.01  93.57   5.7 
 1.000D-01 8.887D-01 1.333D+00 1.328D+00 1.333D+01 1.334D+01  -0.03  92.19   6.3 
 1.259D-01 8.902D-01 1.335D+00 1.326D+00 1.061D+01 1.061D+01  -0.07  90.39   6.2 
 1.585D-01 8.917D-01 1.339D+00 1.324D+00 8.448D+00 8.457D+00  -0.12  88.36   6.3 
 1.995D-01 8.966D-01 1.346D+00 1.323D+00 6.748D+00 6.750D+00  -0.02  86.12   6.4 
 2.512D-01 9.016D-01 1.355D+00 1.319D+00 5.396D+00 5.402D+00  -0.10  83.49   6.5 
 3.162D-01 9.115D-01 1.372D+00 1.314D+00 4.338D+00 4.341D+00  -0.07  80.71   6.7 
 3.981D-01 9.255D-01 1.396D+00 1.307D+00 3.507D+00 3.509D+00  -0.07  77.73   6.6 
 5.012D-01 9.458D-01 1.433D+00 1.296D+00 2.860D+00 2.863D+00  -0.09  74.87   6.5 
 6.310D-01 9.795D-01 1.491D+00 1.282D+00 2.363D+00 2.364D+00  -0.05  72.36   6.9 
 7.943D-01 1.029D+00 1.574D+00 1.261D+00 1.981D+00 1.984D+00  -0.14  70.31   7.3 
 1.000D+00 1.104D+00 1.699D+00 1.239D+00 1.699D+00 1.699D+00   0.01  69.11   7.4 
 1.259D+00 1.215D+00 1.874D+00 1.215D+00 1.488D+00 1.487D+00   0.07  69.01   7.5 
 1.585D+00 1.372D+00 2.113D+00 1.191D+00 1.333D+00 1.333D+00   0.01  69.95   7.3 
 1.995D+00 1.593D+00 2.442D+00 1.171D+00 1.224D+00 1.223D+00   0.06  71.85   6.9 
 2.512D+00 1.893D+00 2.882D+00 1.158D+00 1.147D+00 1.147D+00   0.05  74.40   6.4 
 3.162D+00 2.288D+00 3.465D+00 1.148D+00 1.096D+00 1.095D+00   0.06  77.44   7.1 
 3.981D+00 2.801D+00 4.226D+00 1.141D+00 1.062D+00 1.061D+00   0.04  80.35   7.0 
 5.012D+00 3.461D+00 5.208D+00 1.137D+00 1.039D+00 1.039D+00   0.01  83.30   6.8 
 6.310D+00 4.301D+00 6.466D+00 1.134D+00 1.025D+00 1.025D+00   0.01  85.93   6.7 
 7.943D+00 5.374D+00 8.068D+00 1.132D+00 1.016D+00 1.016D+00   0.00  88.26   6.5 
 1.000D+01 6.727D+00 1.010D+01 1.132D+00 1.010D+00 1.010D+00   0.00  90.31   6.1 
 1.259D+01 8.440D+00 1.267D+01 1.129D+00 1.006D+00 1.006D+00   0.00  92.07   6.0 
 1.585D+01 1.061D+01 1.591D+01 1.129D+00 1.004D+00 1.004D+00  -0.01  93.50   6.4 
 1.995D+01 1.333D+01 2.000D+01 1.129D+00 1.003D+00 1.003D+00   0.00  94.79   6.3 
 2.512D+01 1.678D+01 2.516D+01 1.128D+00 1.002D+00 1.002D+00  -0.01  95.77   6.4 
 3.162D+01 2.109D+01 3.162D+01 1.129D+00 1.000D+00 1.001D+00  -0.10 100.00   2.2 
 3.981D+01 2.654D+01 3.981D+01 1.129D+00 1.000D+00 1.001D+00  -0.06 100.00   2.1 
 5.012D+01 3.343D+01 5.012D+01 1.129D+00 1.000D+00 1.000D+00  -0.04 100.00   2.2 
 6.310D+01 4.206D+01 6.310D+01 1.129D+00 1.000D+00 1.000D+00  -0.03 100.00   2.1 
 7.943D+01 5.294D+01 7.943D+01 1.129D+00 1.000D+00 1.000D+00  -0.02 100.00   2.0 
 1.000D+02 6.668D+01 1.000D+02 1.129D+00 1.000D+00 1.000D+00  -0.01 100.00   2.0 

Table 1: Calculation of relative speed versus fixed neutron speed 



 

 
Figure 1: Sampling a Maxwellian 



 
Figure 2: Sampling relative speed, x = 0.001, 0.01, 0.1, and 1 



 
Figure 3: Sampling Relative Speed, x = 2, 3, 4, and 5 



 
Figure 4: Sampling Relative Speed, x = 6, 7, 8, and 10 

 



 
Figure 5: Time dependent thermalization without absorption; atomic weight = 1 



 
Figure 6: Time dependent thermalization with absorption; atomic weight = 1 



 
Figure 7: Time dependent thermalization without absorption; atomic weight = 238 



 
Figure 8: Time independent thermalization with absorption; atomic weight = 1 



 
Figure 9: Time independent thermalization with absorption; atomic weight = 1 



 
Figure 10: Time independent thermalization without resonance; atomic weight = 1 



 
Figure 11: Time independent thermalization with resonance; atomic weight = 1 



 
Figure 12: Time independent thermalization without resonance 



 
Figure 13: Time independent thermalization with resonance 


